Catabolite repression and activation in Bacillus subtilis: dependency on CcpA, HPr, and HprK.

نویسندگان

  • Graciela L Lorca
  • Yong Joon Chung
  • Ravi D Barabote
  • Walter Weyler
  • Christophe H Schilling
  • Milton H Saier
چکیده

Previous studies have suggested that the transcription factor CcpA, as well as the coeffectors HPr and Crh, both phosphorylated by the HprK kinase/phosphorylase, are primary mediators of catabolite repression and catabolite activation in Bacillus subtilis. We here report whole transcriptome analyses that characterize glucose-dependent gene expression in wild-type cells and in isogenic mutants lacking CcpA, HprK, or the HprK phosphorylatable serine in HPr. Binding site identification revealed which genes are likely to be primarily or secondarily regulated by CcpA. Most genes subject to CcpA-dependent regulation are regulated fully by HprK and partially by serine-phosphorylated HPr [HPr(Ser-P)]. A positive linear correlation was noted between the dependencies of catabolite-repressible gene expression on CcpA and HprK, but no such relationship was observed for catabolite-activated genes, suggesting that large numbers of the latter genes are not regulated by the CcpA-HPr(Ser-P) complex. Many genes that mediate nitrogen or phosphorus metabolism as well as those that function in stress responses proved to be subject to CcpA-dependent glucose control. While nitrogen-metabolic genes may be subject to either glucose repression or activation, depending on the gene, almost all glucose-responsive phosphorus-metabolic genes exhibit activation while almost all glucose-responsive stress genes show repression. These responses are discussed from physiological standpoints. These studies expand our appreciation of CcpA-mediated catabolite control and provide insight into potential interregulon control mechanisms in gram-positive bacteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon catabolite repression in Bacillus subtilis: quantitative analysis of repression exerted by different carbon sources.

In many bacteria glucose is the preferred carbon source and represses the utilization of secondary substrates. In Bacillus subtilis, this carbon catabolite repression (CCR) is achieved by the global transcription regulator CcpA, whose activity is triggered by the availability of its phosphorylated cofactors, HPr(Ser46-P) and Crh(Ser46-P). Phosphorylation of these proteins is catalyzed by the me...

متن کامل

CcpB, a novel transcription factor implicated in catabolite repression in Bacillus subtilis.

Recent work has shown that in Bacillus subtilis catabolite repression of several operons is mediated by a mechanism dependent on DNA-binding protein CcpA complexed to a seryl-phosphorylated derivative of HPr [HPr(Ser-P)], the small phosphocarrier protein of the phosphoenolpyruvate-sugar phosphotransferase system. In this study, it was found that a transposon insertional mutation resulted in the...

متن کامل

trans-Acting factors and cis elements involved in glucose repression of arabinan degradation in Bacillus subtilis.

In Bacillus subtilis, the synthesis of enzymes involved in the degradation of arabinose-containing polysaccharides is subject to carbon catabolite repression (CCR). Here we show that CcpA is the major regulator of repression of the arabinases genes in the presence of glucose. CcpA acts via binding to one cre each in the promoter regions of the abnA and xsa genes and to two cres in the araABDLMN...

متن کامل

NADP, corepressor for the Bacillus catabolite control protein CcpA.

Expression of the alpha-amylase gene (amyE) of Bacillus subtilis is subject to CcpA (catabolite control protein A)-mediated catabolite repression, a global regulatory mechanism in Bacillus and other Gram-positive bacteria. To determine effectors of CcpA, we tested the ability of glycolytic metabolites, nucleotides, and cofactors to affect CcpA binding to the amyE operator, amyO. Those that stim...

متن کامل

Catabolite repression resistance of gnt operon expression in Bacillus subtilis conferred by mutation of His-15, the site of phosphoenolpyruvate-dependent phosphorylation of the phosphocarrier protein HPr.

Carbon catabolite repression of the gnt operon of Bacillus subtilis is mediated by the catabolite control protein CcpA and by HPr, a phosphocarrier protein of the phosphotransferase system. ATP-dependent phosphorylation of HPr at Ser-46 is required for carbon catabolite repression as ptsH1 mutants in which Ser-46 of HPr is replaced with an unphosphorylatable alanyl residue are resistant to carb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 187 22  شماره 

صفحات  -

تاریخ انتشار 2005